Mini-Courses
Each course lasts for 8 hours.
First Week : 15th-18th June 2015
- Giovanni Alberti (Università di Pisa) - Introduction to minimal surfaces and finite perimeter sets
- Yoshihiro Tonegawa (Tokyo Institute of Technology) - Analysis on the mean curvature flow and the reaction-diffusion approximation
- Tatiana Toro (University of Washington) - Geometry of measures and applications
Second Week : 22th-26th June 2015
- Fernando Coda-Marques (Princeton) - Min-max theory and the solution to the Willmore conjecture
- Camillo De Lellis (Universität Zürich) - Center manifolds and regularity of area-minimizing currents
- Joseph Fu (University of Georgia) - Integral geometric regularity
Conference: 29th June - 3rd July 2015
(Tentative program)
- N. Alikakos (Athens) - On the structure of phase transition maps: Density estimates and
applications
- A. Braides
- D. Cohen-Steiner (INRIA Nice) - Persistent homology and geometric inference
- O. Druet (Lyon) - CMC disks with fixed boundary : compactness, existence, ...
- E. Durand-Cartagena (Madrid) - A purely geometric characterization of $\infty$-Poincaré inequality
- A. Giacomini (Brescia) - Free discontinuity problems and Robin boundary conditions
- R. Hardt (Houston) - Rectifiable and Flat Homology and Cohomology Theorie
- B. Kirchheim (Leipzig) - Equidimensional isometric maps
- G.-P. Leonardi (Modena) - Towards a unified theory of surface discretization
- B. Lévy (INRIA Nancy) - A numerical algorithm for L2 semi-discrete optimal transport in 3D
- X. Liang (Lyon) - An example of proving Almgren’s minimality by product of paired calibrations
- A. Lorent (Cincinnati) - The Aviles Giga functional: past and present
- F. Maggi (Austin) - A quantitative description of almost constant mean curvature hypersurfaces
- U. Menne (Potsdam) - Weakly differentiable functions and Sobolev functions on varifolds
- F. Morgan (Williams College) - Isoperimetric Problems
- M. Novaga (Pisa) - Nonlocal isoperimetric problems
- G. Pisante (Napoli)
- D. Preiss* (Warwick)
- M. Röger (Bonn) - A curvature energy for bilayer membranes
- F.-X. Vialard (Paris Dauphine) - On geometric variational problems on the group of diffeomorphisms
- N. Wickramasekera (Cambridge)
*to be confirmed